
Semi-Federated Scheduling of Parallel Real-Time
Tasks on Multiprocessors

Xu Jiang, Nan Guan, Xiang Long, Wang Yi

Abstract—Federated scheduling is a promising approach to
schedule parallel real-time tasks on multi-cores, where each heavy
task exclusively executes on a number of dedicated processors,
while light tasks are treated as sequential sporadic tasks and
share the remaining processors. However, federated scheduling
suffers resource waste since a heavy task with processing capacity
requirement x + ε (where x is an integer and 0 < ε < 1) needs
x+1 dedicated processors. In the extreme case, almost half of the
processing capacity is wasted. In this paper we propose the semi-
federate scheduling approach, which only grants x dedicated
processors to a heavy task with processing capacity requirement
x+ε, and schedules the remaining ε part together with light tasks
on shared processors. Experiments with randomly generated task
sets show the semi-federated scheduling approach significantly
outperforms not only federated scheduling, but also all existing
approaches for scheduling parallel real-time tasks on multi-cores.

I. INTRODUCTION

Multi-cores are more and more widely used in real-time

systems, to meet their rapidly increasing requirements in

performance and energy efficiency. The processing capacity

of multi-cores is not a free lunch. Software must be properly

parallelized to fully exploit the computation capacity of multi-

core processors. Existing scheduling and analysis techniques

for sequential real-time tasks are hard to migrate to the parallel

workload setting. New scheduling and analysis techniques are

required to deploy parallel real-time tasks on multi-cores.

A parallel real-time task is usually modeled as a Directed

Acyclic Graph (DAG). Several scheduling algorithms have

been proposed to schedule DAG tasks in recent years, among

which federated scheduling [1] is a promising approach with

both good real-time performance and high flexibility. In fed-

erated scheduling, DAG tasks are classified into heavy tasks

(density > 1) and light tasks (density ≤ 1). Each heavy task

exclusively executes on a subset of dedicated processors. Light

tasks are treated as traditional sequential real-time tasks and

share the remaining processors. Federated scheduling not only

can schedule a large portion of DAG task systems that is

not schedulable by other approaches, but also provides the

best quantitative worst-case performance guarantee [1]. On

the other hand, federated scheduling allows flexible workload

specification as the underlying analysis techniques only require

Xu Jiang is with The Hong Kong Polytechnic University and State Key
Laboratory of Virtual Reality Technology and System, School of Computer
Science and Engineering, Beihang University, China. Nan Guan is with The
Hong Kong Polytechnic University. Xiang Long is with the State Key Labora-
tory of Virtual Reality Technology and System, School of Computer Science
and Engineering, Beihang University, China. Wang Yi is with the Northeastern
University, China and Uppsala University, Sweden. Corresponding author:
Nan Guan, nan.guan@polyu.edu.hk

(a) Federated scheduling. (b) Semi-federated scheduling.

Fig. 1. Illustration of federated scheduling and semi-federated scheduling.

information about the critical path length and total workload of

the DAG, and thus can be easily extended to more expressive

models, such as DAG with conditional branching [2], [3].

However, federated scheduling may suffer significant re-

source waste, since each heavy task exclusively owns a subset

of processors. For example, if a heavy task requires processing

capacity x + ε (where x is an integer and 0 < ε < 1), then
�x + ε� = x + 1 dedicated processors are granted to it, as

shown in Figure 1-(a). In the extreme case, almost half of the

total processing capacity is wasted (when a DAG requires 1+ε
processing capacity and ε→ 0).

In this work, we propose the semi-federated scheduling
approach to solve the above resource waste problem. In semi-

federated scheduling, a DAG task requiring x + ε processing

capacity is only granted x dedicated processors, and the

remaining fractional part ε is scheduled together with the light

tasks, as illustrated in Figure 1-(b).

The major challenge we face in realizing semi-federated

scheduling is how to control and analyze the interference

suffered by the fractional part, and its effect to the timing

behavior of the entire heavy task. The fractional part of

a heavy task is scheduled together with, and thus suffers

interference from the light tasks and the fractional parts of

other heavy tasks. Due to the intra-task dependencies inside

a DAG, this interference is propagated to other parts of the

DAG executed on the dedicated processors, and thus affects the

timing behavior of the entire DAG task. Existing scheduling

and analysis techniques for federated scheduling (based on the

classical work in [4]) cannot handle such extra interference.

This paper addresses the above challenges and develops

semi-federated scheduling algorithms in the following steps.

First, we study the problem of bounding the response time

of an individual DAG executing on a uniform multiprocessor

platform (where processors have different speeds). The results

we obtained for this problem serve as the theoretical foun-

dation of the semi-federated scheduling approach. Intuitively,

granting a portion (< 1) of the processing capacity of a

processor to execute the fractional part of a DAG is similar to

80

2017 IEEE Real-Time Systems Symposium

1052-8725/17/31.00 ©2017 IEEE
DOI 10.1109/RTSS.2017.00015

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 26,2022 at 15:06:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. A DAG task example.

executing it on a slower processor.

Second, the above results are transferred to the realistic

situation where the fractional parts of DAG tasks and the light

tasks share several processors with unit speed. This is realized

by executing the fractional parts via sequential container tasks,
each of which has a load bound. A container task plays the

role of a dedicated processor with a slower speed (equals the

container task’s load bound), and thus the above results can

be applied to analyze the response time of the DAG task.

Finally, we propose two semi-federated scheduling algo-

rithms based on the above framework. In the first algorithm,

a DAG task requiring x + ε processing capacity is granted

x dedicated processors and one container task with load

bound ε, and all the container tasks and the light tasks are

scheduled by partitioned EDF on the remaining processors.

The second algorithm enhances the first one by allowing to

divide the fractional part ε into two container tasks, which

further improves resource utilization.

We conduct experiments with randomly generated work-

load, which show our semi-federated scheduling algorithms

significantly improve schedulability over the state-of-the-art

of, not only federated scheduling, but also the other types such

as global scheduling and decomposition-based scheduling.

II. PRELIMINARY

A. Task Model

We consider a task set τ of n tasks {τ1, τ2, ..., τn}, executed
on a multiprocessor platform of m identical processors with

unit speed. Each task is represented by a DAG, with a period

Ti and a relative deadline Di. We assume all tasks to have

constrained deadlines, i.e., Di ≤ Ti. Each task is represented

by a directed acyclic graph (DAG). A vertex v in the DAG has

a WCET c(v). Edges represent dependencies among vertices.

A directed edge from vertex v to u means that u can only be

executed after v is finished. In this case, v is a predecessor of

u, and u is a successor of v. We say a vertex is eligible at some

time point if all its predecessors in the current release have

been finished and thus it can immediately execute if there are

available processors. We assume each DAG has a unique head

vertex (with no predecessor) and a unique tail vertex (with no

successor). This assumption does not limit the expressiveness

of our model since one can always add a dummy head/tail

vertex to a DAG with multiple entry/exit points.

We use Ci to denote the total worst-case execution time of

all vertices of DAG task τi and Li to denote the sum of c(v) of
each vertex v along the longest chain (also called the critical

path) of τi. The utilization of a DAG task τi is Ci

Ti
, and its

density is Ci

Di
. A DAG task is called a heavy task if it density

is larger than 1, and a light task otherwise.

Figure 2 shows a DAG task with 6 vertices. We can compute

Ci = 16 and Li = 8 (the longest path is {v1, v4, v5, v6}). This
is a heavy task since the density is 16

14 > 1.

B. Federated Scheduling

In federated scheduling [1], each heavy task exclusively

executes on a subset of dedicated processors. Light tasks

are treated as traditional sequential real-time tasks and share

the remaining processors. As a heavy task exclusively owns

several dedicated processors and its workload must be finished

before the next release time (due to constrained deadlines), the

response time of a heavy task τi can be bounded using the

classical result for non-recurrent DAG tasks by Graham [4]:

Ri ≤ Li +
Ci − Li

mi
(1)

where mi is the number of dedicated processors granted to

this heavy task. Therefore, by setting the upper bound of the

response time less than the deadline, we can calculate the

minimal amount of processing capacity required by this task

to meet its deadline Ci−Li

Di−Li
, and the number of processors

assigned to a heavy task τi is the minimal integer no smaller

than
⌈
Ci−Li

Di−Li

⌉
. The light tasks are treated as sequential spo-

radic tasks, and are scheduled on the remaining processors

by traditional multiprocessor scheduling algorithms, such as

global EDF [5] and partitioned EDF [6].

III. A SINGLE DAG ON UNIFORM MULTIPROCESSORS

In this section, we focus on the problem of bounding the

response time of a single DAG task exclusively executing on a

uniform multiprocessor platform, where processors in general

have different speeds. The reason why we study the case

of uniform multiprocessors is as follows. In semi-federated

scheduling, a heavy task may share processors with others.

From this heavy task’s point of view, it only owns a portion

of the processing capacity of the shared processors. Therefore,

to analyze semi-federated scheduling, we first need to solve the

fundamental problem of how to bound the response time in the

presence of portioned processing capacity. The results of this

section serve as the theoretical foundation for semi-federated

scheduling on identical multiprocessors in later sections (while

they also can be directly used for federated scheduling on

uniform multiprocessors as a byproduct of this paper).

A. Uniform Multiprocessor Platform

We assume a uniform multiprocessor platform of m
processors, characterized by their normalized speeds

{δ1, δ2, · · · , δm}. Without loss of generality, we assume

the processors are sorted in non-increasing speed order

(δx ≥ δx+1) and the fastest processor has a unit speed i.e.,

δ1 = 1. In a time interval of length t, the amount of workload

executed on a processor with speed δx is tδx. Therefore, if
the WCET of some workload on a unit speed processor is c,
then its WCET becomes c/δx on a processor of speed δx.

81

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 26,2022 at 15:06:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. A work-conserving scheduling sequence on uniform multiprocessors.

B. Work-Conserving Scheduling on Uniform Multiprocessors

On identical multiprocessors, a work-conserving scheduling

algorithm never leaves any processor idle while there exists

some eligible vertex. The response time bound for a DAG

task in (1) is applicable to any work-conserving scheduling

algorithm, regardless what particular strategy is used to assign

the eligible vertices to available processors.

However, on uniform multiprocessors, the strategy to assign

eligible vertices to processors may greatly affect the timing

behavior of the task. Therefore, we extend the concept of

work-conserving scheduling to uniform multiprocessors by

enforcing execution on faster processors as much as possible

[7]. More precisely, a scheduling algorithm is work-conserving

on m uniform processors if it satisfies both of the following

conditions:

1) No processor is idled when there are eligible vertices

awaiting execution.

2) If at some time point there are fewer than m eligible

vertices awaiting execution, then the eligible vertices are

executed upon the fastest processors.

Figure 3 shows a possible scheduling sequence of the DAG

task on three processors with speeds {1, 0.5, 0.25}. Vertex v2
migrates to the fastest processor at time 5 and v5 migrates

to the fastest processor at time 9. These two extra migrations

are the price paid for satisfying the second condition of work-

conserving scheduling in above.

If we disallow the migration from slower processors to faster

processors, there may be significant resource waste. In the

worst case, a DAG task will execute its longest path on the

lowest processor, which results in very large response time.

C. Response Time Bounds

In the following we derive a response time bound for

a single DAG task executing on a uniform multiprocessor

platform under work-conserving scheduling. Although the task

is recurrent, we only need to analyze its behavior in one release

since the task has a constrained deadline. We first introduce

the concept uniformity [7]:

Definition 1 (Uniformity). The uniformity of m processors
with speeds {δ1, · · · , δm} (δx ≥ δx+1) is defined as

λ =
m

max
x=1

{
Sm − Sx

δx

}
(2)

Fig. 4. Illustration of αx and βx.

where Sx is the sum of the speeds of the x fastest processors:

Sx =
x∑

j=1

δj (3)

Now we derive the response time upper bound:

Theorem 1. The response time of a DAG task τi executing on
m processors with speeds {δ1, · · · , δm} is bounded by:

R ≤ Ci + λLi

Sm
(4)

where λ and Sm are defined in Definition 1.

Proof. For simplify of presentation, we assume that each

vertex v executes exactly for its WCET c(v)1. Without loss

of generality, we assume the task under analysis releases an

instance at time 0, and thus finishes the current instance at

time R. During the time window [0, R], let αx denote the

total length of intervals during which the xth processor (with

speed δx) is busy. By the work-conserving scheduling rules in

Section III-B, we know if the xth processor is busy in a time

interval then all faster processors (with index smaller than x)
must also be busy. Therefore, we know R = α1. We define

βx =

{
αx − αx+1, 1 ≤ x < m

αx, x = m

Figure 4 illustrates the definition of αx and βx. So we can

rewrite R = α1 as

R =
m∑

x=1

βx (5)

The total workload executed on all the processors in [0, R]
is (β1S1 + · · · + βmSm), which equals the total worst-case

execution time of the task:

Ci =

m∑
x=1

βxSx (6)

Now we define a path π = {v1, v2, ..., vz−1, vz} of the DAG
recursively: let vz be the latest finished vertex in the DAG

and vz−1 be the latest finished vertex among all predecessors

of vz , and so on. All processors must be busy between the

finishing time of vk and the starting time of vk+1 for ∀k :
1 ≤ k ≤ z − 1. We use χ(π, δx) to denote the total amount

1It is easy to show that the response time bound in (4) is free from timing
anomalies, and thus still holds if some vertex executes for shorter than its
WCET.

82

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 26,2022 at 15:06:06 UTC from IEEE Xplore. Restrictions apply.

of workload executed for vertices along path π in all the time

intervals during which the following conditions are satisfied:

• at least one processor is idle, and

• the slowest busy processor has speed δx.

The total length of such time intervals is βx. Since at least

one processor is idle, π must contain a vertex being executed

in this time interval (by the definition of π, we know at any

time point before R, there is at least one eligible vertex along

π.). Therefore, we have

χ(π, δx) ≥ βxδx

⇒
m−1∑
x=1

χ(π, δx) ≥
m−1∑
x=1

βxδx (7)

Let lπ denote the total workload along path π, so we have

m−1∑
x=1

χ(π, δx) ≤ lπ

Since Li is the total workload of the longest path in the DAG,

we know lπ ≤ Li. In summary, we have

m−1∑
x=1

χ(π, δx) ≤ Li (8)

Combining (7) and (8) gives

Li ≥
m−1∑
x=1

βxδx ⇒ λLi ≥
m−1∑
x=1

βxδxλ (9)

By the Definition of λ in (2) we know ∀x :
Sm − Sx

δx
≤ λ.

Therefore, (9) can be rewritten as λLi ≥
m−1∑
x=1

βx(Sm − Sx)

and by applying (6) we get

Ci + λLi ≥
m−1∑
x=1

βx(Sm − Sx) +
m∑

x=1

βxSx

⇔ Ci + λLi ≥ βmSm +
m−1∑
x=1

βxSm

⇔ Ci + λLi ≥ Sm

m∑
x=1

βx

and by applying (5), the theorem is proved.

When δ1 = · · · = δm = 1, we have λ = m−1 and Sm = m,

so the bound in Theorem 1 perfectly degrades to (1) for the

case of identical processors.

IV. RUNTIME DISPATCHER OF EACH DAG

The conceptual uniform multiprocessor platform in last

section imitates the resource obtained by a task when sharing

processors with other tasks. A naive way to realize the con-

ceptual uniform multiprocessors on our identical unit-speed

multiprocessor platform is to use fairness-based scheduling,

in which task switching is sufficiently frequent so that each

task receives a fixed portion of processing capacity. However,

this approach incurs extremely high context switch overheads,

which may not be acceptable in practice.

In the following, we introduce our method to realize the

proportional sharing of processing capacity without frequent

context switches. The key idea is to use a runtime dispatcher
for each DAG task to encapsulate the execution on a concep-

tual processor with speed δp into a container task ϕp with a

load bound δp. The dispatcher guarantees that the workload

encapsulated into a container task does not exceed its load

bound. These container tasks are scheduled using priority-

based scheduling algorithms and their load bounds can be used

to decide the schedulability.

As will be introduced in the next section, in our semi-

federated scheduling algorithms, most of the container tasks

used by a DAG task have a load bound 1, which correspond

to the dedicated processors, and only a few of them have

fractional load bounds (< 1). However, for simplicity of pre-

sentation, in this section we treat all container tasks identically,

regardless whether the load bound is 1 or not.

Suppose we execute a DAG task via m container tasks

{ϕ1, ϕ2, · · · , ϕm}. Each of the container task is affiliated with

the following information ϕp = (δp, dp, exep):

• δp: the load bound of ϕp, which is a fixed value.

• dp: the absolute deadline of ϕp, which varies at runtime.

• exep: the vertex currently executed by ϕp, which also

varies at runtime

At each time instant, a container task is either occupied by

some vertex or empty. If a container task is occupied by vertex

v, i.e., exep = v, then this container task is responsible to

execute the workload of v and the maximal workload executed

by this container task executes before the absolute deadline dp
is c(v). A vertex v may be divided into several parts, and their

total WCET equals c(v), as will be discussed later when we

introduce Algorithm 1. Note that an occupied container task
becomes empty when time reaches its absolute deadline.

Algorithm 1 The dispatching algorithm (invoked at time t).

1: v = an arbitrary eligible vertex in S (S stores the set of

vertices that have not been executed yet);

2: Remove v from S;
3: ϕp = the empty container task with the largest load bound;

4: d′ = the earliest deadline of all occupied container tasks

with load bound strictly larger than δp;

5: if (all container tasks are empty) ∨ (d′ > t+ c(v)
δp

) then
6: dp = t+ c(v)/δp
7: exep = v
8: else
9: dp = d′

10: Split v into v′ and v′′ so that

c(v′) = (dp − t)× δp and c(v′′) = c(v)− c(v′)

11: exep = v′

12: Put v′′ back to the head of S;
13: Add a precedence constraint from v′ to v′′;
14: end if

83

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 26,2022 at 15:06:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. A scheduling sequence on container tasks.

The pseudo-code of the dispatcher is shown in Algorithm

1. At runtime, the dispatcher is invoked when there exist both

empty container tasks and eligible vertices. The target of the

dispatcher is to assign (a part of) an eligible vertex to the

fastest (i.e., with the largest δp) empty container task.

The absolute deadline dp of ϕp mimics the finishing time

of a vertex if it is executed on a processor with the speed δp.
When the container task starts to be occupied by a vertex v
at time t, dp is set to be dp = t + c(v)/δp. Therefore, the
dispatcher guarantees the execution rate of a container task to

be consistent with the corresponding uniform processors:

Property 1. If ϕp starts to be occupied by v at t1 and becomes
empty at t2, the maximal workload executed by ϕp in [t1, t2)
is (t2 − t1)δp.

Another key point of Algorithm 1 is always keeping the

container task with larger load bounds being occupied, which

mimics the second work-conserving scheduling rule on uni-

form multiprocessors (workload is always executed on faster

processors). This is done by checking the condition in line 5:

d′ > t+ c(v)/δp (10)

where d′ is the earliest absolute deadline among all the

container tasks currently being occupied and δp is the load

bound of the fastest empty container task which will be used

now. If this condition does not hold, putting the entire v into

ϕp may lead to the situation that a container task with a

larger load bound becomes empty while ϕp is still occupied.

This corresponds to the situation on uniform processors that

a faster processor is idle while a slower processor is busy,

which violates the second work-conserving scheduling rule.

To solve this problem, in Algorithm 1, when condition (10)

does not hold, v is split into two parts v′ and v′′, so that ϕp

only executes the first part v′, whose deadline exactly equals

to the earliest absolute deadline of all faster container tasks

(line 10). The remaining part v′′ is put back to S and will

be assigned in the future, and a precedence from v′ to v′′ is
established to guarantee that v′′ become eligible only if v′ has
finished. In summary, Algorithm 1 guarantees the following

property:

Property 2. The eligible vertices are always executed upon
the container tasks with the largest load bounds.

Figure 5 shows a possible scheduling sequence of the

example DAG task in Figure 2 executed on three container

tasks with load bounds δ1 = 1, δ2 = 0.5 and δ3 = 0.25. An
upwards arrow represents an empty container task becoming

occupied and a downwards arrow represents an occupied task

becoming empty.

Algorithm 1 is invoked whenever there exist both eligible

vertices and empty container tasks. This scheduling sequence

corresponds to the scheduling sequence of the same task on

uniform processors with speeds δ1 = 1, δ2 = 0.5 and δ3 =
0.25 in Figure 3. We can see that the amount of workload

executed between any two time points at which Algorithm 1

is invoked, is the same in both scheduling sequences.

In general, if each container task always finishes the work-

load of its assigned vertex before the corresponding deadline,

the scheduling sequence resulted by Algorithm 1 on container

tasks with load bounds {δ1, · · · , δm} corresponds to a work-

conserving scheduling sequence of the same DAG task on

uniform multiprocessors with speeds {δ1, · · · , δm}. Therefore
the response time bound in Theorem 1 can be applied to bound

the response time of the DAG task executed on container tasks

using Algorithm 1. By the above discussions, we can conclude

the following theorem.

Theorem 2. Suppose a DAG task τi executes on m container
tasks with load bounds {δ1, · · · , δm} and each container task
always finishes its assigned workload before the corresponding
absolute deadline, then the response time R of τi is upper
bounded by:

R ≤ Ci + λLi

Sm
(11)

V. SEMI-FEDERATED SCHEDULING ALGORITHMS

In this section, we propose two semi-federated scheduling

algorithms based on container task and runtime dispatcher

introduced in last section. In the first algorithm, a DAG task

requiring x + ε processing capacity is granted x dedicated

processors and one container task with load bound ε, and

all the container tasks and the light tasks are scheduled by

partitioned EDF on the remaining processors. The second

algorithm enhances the first one by allowing to divide the frac-

tional part ε into two container tasks, which further improves

resource utilization.

A. The First Algorithm: SF[x+1]

By Theorem 2 we know a DAG task is schedulable if the

load bounds {δ1, · · · , δm} of the container tasks satisfy

Ci + λLi

Sm
≤ Di (12)

where λ is the uniformity and Sm is the sum of {δ1, · · · , δm},
as defined in Definition 1. There are different choices of the

container tasks to make a DAG task schedulable. In general,

we want to make the DAG task to be schedulable with as little

processing capacity as possible. The load bound of a container

task actually represents its required processing capacity, and

thus Sm represents the total processing capacity required by

84

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 26,2022 at 15:06:06 UTC from IEEE Xplore. Restrictions apply.

all the container tasks for a DAG task. In the following, we

will introduce how to choose the feasible container task set

with the minimal Sm.

We first show that the total load bound of any container task

set that can pass the condition (12) has a lower bound:

Definition 2. The minimal capacity requirement γi of a DAG
task τi is defined as:

γi =
Ci − Li

Di − Li
(13)

Lemma 1. A DAG task τi is scheduled on m container
tasks with load bounds {δ1, δ2, · · · , δm}. If condition (12) is
satisfied, then it must hold

Sm ≥ γi

Proof. Without loss of generality, we assume the container

tasks are sorted in non-increasing order of their load bounds,

i.e., δp ≥ δp+1. By the definition of λ we have

λ ≥ Sm − δ1
δ1

and since the load bounds are at most 1, i.e., δ1 ≤ 1, we know

λ ≥ Sm − 1

Applying this to (12) yields

Ci + (Sm − 1)Li

Sm
≤ Di ⇒ Sm ≥ Ci − Li

Di − Li

so the lemma is proved.

Next we show that the minimal capacity requirement is

achieved by using only one container task with a fractional

load bound (< 1) and x container tasks with load bound 1:

Lemma 2. A DAG task τi is schedulable on x container tasks
with load bound of 1 and one container task with load bound
δ, where x = �γi� and δ = γi − �γi�.
Proof. By the definition of λ, we get

λ=max

(
γi − 1

1
, · · · , γi − �γi�

1

)
= γi − 1

and we know Sm = x+ δ = γi. So by (11) the response time

of τi is bounded by

R ≤ Ci + (γi − 1)Li

γi

In order to prove τi is schedulable, it is sufficient to prove

Ci + (γi − 1)Li

γi
≤ Di

which must be true by the definition of γi.

In summary, by Lemma 1 and 2 we know using x container

tasks with load bound 1 and one container task with a frac-

tional load bound requires the minimal processing capacity,

which motivates our first scheduling algorithm SF[x+1].
The pseudo-code of SF[x+1] is shown in Algorithm 2. The

rules of SF[x+1] can be summarized as follows:

Algorithm 2 The first semi-federated algorithm: SF[x+1].
1: for each heavy task τi do
2: γi =

Ci−Li

Di−Li

3: if less than �γi� avaiable processors then
4: return failure
5: end if
6: assign �γi� dedicated processors to τi
7: create a container task with load bound γi−�γi� for τi
8: end for
9: Ω = the set of remaining processors

10: S = the set of container tasks ∪ the set of light tasks

11: if Sched(S, Ω) then return success else return failure

• Similar to federated scheduling, SF[x+1] also classifies

DAG tasks into heavy tasks (density > 1) and light tasks

(density ≤ 1).
• For each heavy task τi, we grant �γi� dedicated proces-

sors and one container task with load bound γi−�γi� to
it where γi =

Ci−Li

Di−Li
(line 2 to 7). The algorithm declares

a failure if some heavy tasks cannot get enough dedicated

processors.

• After granting dedicated processors and container tasks to

all heavy tasks, the remaining processors will be used to

schedule the light tasks and container tasks. The function

Sched(S, Ω) (in line 11) returns the the schedulability

testing result of the task set consisting of light tasks and

container tasks on processors in Ω.

Various multiprocessor scheduling algorithms can be used

to schedule the light tasks and container tasks, such as global

EDF and partitioned EDF. In this work, we choose to use

partitioned EDF, and in particular with the Worst-Fit packing

strategy [8], to schedule them.

More specific, at design time, the light tasks and container

tasks are partitioned to the processors in Ω. Tasks are parti-

tioned in the non-increasing order of their load (the load of

a light task τi equals its density Ci/Di, and the load of a

container task ϕp equals its load bound δp). At each step the

processor with the minimal total load of currently assigned

tasks is selected, as long the total load of the processor after

accommodating this task still does not exceed 1. Sched(S,
Ω) returns true if all tasks are partitioned to some processors,

and returns false otherwise.

At runtime, the jobs of tasks partitioned to each processor

are scheduled by EDF. Each light task behaves as a standard

sporadic task. Each container task behaves as a GMF (general

multi-frame) task [9]: when a container task ϕp starts to be

occupied by a vertex v, ϕp releases a job with WCET c(v) and
an absolute deadline dp calculated by Algorithm 1. Although

a container task ϕp releases different types of jobs, its load is

bounded by δp as the density of each of its jobs is δp.
We use the following example to illustrate SF[x+1]. Assume

a task set consists of 4 DAG tasks, where the first three are

heavy, with the minimal capacity requirements γ1 = 1.6,
γ2 = 1.6 and γ3 = 1.5, and one light task with density

γ4 = 0.3. If scheduled by standard federated scheduling, each

85

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 26,2022 at 15:06:06 UTC from IEEE Xplore. Restrictions apply.

of the three heavy tasks requires 2 dedicated processors, and

in total 7 processor are needed. If scheduled by SF[x+1], each
of the heavy task only requires one dedicated processors, and

they generate three container tasks, with load bounds 0.6, 0.6
and 0.5. These three container tasks, together with the light

tasks with density 0.3 is schedulable by partitioned EDF on

3 processors, so in total 6 processors are needed to schedule

the task set using SF[x+1].
Recall that in the runtime dispatching, a vertex may be split

into two parts, in order to guarantee a “faster” container task is

never empty when a “slower” one is occupied. The following

theorem bounds the number of extra vertices created due to

the splitting in SF[x+1].

Theorem 3. Under SF[x+1], the number of extra vertices
created in each DAG task is bounded by the number of vertices
in the original DAG.

Proof. Let N be the number of vertices in the original DAG.

According to Algorithm 1, a vertex will not be split if it

is dispatched to a dedicated processor (i.e., a container task

with load bound 1). The number of vertices executed on these

dedicated processors is at most N . A vertex may be split when

being dispatched to the container task with a fractional load

bound, and upon each splitting, the deadline of the first part

must align with some vertices on the dedicated processors, so

the number of splitting is bounded by N .

B. The Second Algorithm: SF[x+2]

In partitioned EDF, “larger” tasks in general lead to worse

resource waste. The system schedulability can be improved

if tasks can be divided into small parts. In SF[x+1], each
heavy task is granted several dedicated processors and one
container task with a fractional load bound. The following

examples shows we can actually divide this container task

into two smaller ones without increasing the total processing

capacity requirement.

Consider the DAG task in Figure 2, the minimal capacity

requirement of which is

γi =
Ci − Li

Di − Li
=

16− 8

14− 8
=

4

3

Accordingly, SF[x+1] assigns one dedicated processor and one
container task with load bound 1

3 to this task.

Now we replace the container task with load bound 1
3 by

two container tasks with load bounds 1
4 and 1

12 . After that,

the total capacity requirement is unchanged since 1
3 = 1

4 +
1
12 ,

and the DAG task is still schedulable since the uniformity of

both {1, 1
3} and {1, 1

4 ,
1
12} is 1

3 .

However, in general dividing a container task into two

may increase the uniformity. For example, if we divide the

container task in the above example into two container tasks

both with load bound 1
6 , the uniformity is increased to 1 and

the DAG task is not schedulable. The following lemma gives

the condition for dividing one container task into two without

increasing the uniformity:

Lemma 3. A heavy task τi with minimal capacity require-
ment γi is scheduled on �γi� dedicated processors and two
container tasks with load bounds δ′ and δ′′ s.t.

δ′ + δ′′ = γi − �γi�
τi is schedulable if

δ′ ≥ max

(
γi − �γi�

2
,
γi − �γi�

γi

)
(14)

Proof. By Theorem 2 we know the response time of τi is

bounded by

R ≤ Ci + λLi

Sm
(15)

Since δ′ + δ′′ = γi − �γi� and δ′ ≥ (γi − �γi�)/2, we know

δ′ ≥ δ′′. So we can calculate λ of �γi� dedicated processors

and two container tasks with load bounds δ′ and δ′′ by:

λ=
m

max
x=1

{
Sm − Sx

δx

}

=max

(
γi − 1

1
,
γi − 2

1
, · · · , γi − �γi�

1
,
δ′′

δ′
,
0

δ′′

)

=max

(
γi − 1

1
,
δ′′

δ′

)
(16)

By δ′+ δ′′ = γi−�γi� and δ′ ≥ γi−�γi�
γi

we get δ′′
δ′ ≤ γi− 1.

Applying this to (16) gives λ = γi − 1. Moreover, we know

Sm = �γi�+ δ′ + δ′′ = γi. Therefore, we have

R ≤ Ci + λLi

Sm
=

Ci + (γi − 1)Li

γi

and by the definition of γi in (13) we know

Ci + (γi − 1)Li

γi
= Di

so we can conclude Ri ≤ Di, and thus τi is schedulable.

Based on the above discussions, we propose the second

semi-federated scheduling algorithm SF[x+2]. The overall

procedure of SF[x+2] is similar to SF[x+1]. The only differ-

ence is that SF[x+2] uses Sched∗(S, Ω) to replace Sched(S,
Ω) in line 11 of Algorithm 2. The pseudo-code of Sched∗(S,
Ω) is given in Algorithm 3. The inputs of Sched∗ are S,
the set of sequential tasks (including the generated container

tasks and the light tasks), and Ω, the remaining processors to

be shared by these sequential tasks.

There are infinitely many choices to divide a container

task into two under the condition of Lemma 3. Among these

choices, no one simply dominates others, since the quality of a

choice depends on how the tasks are partitioned to processors.

In Sched∗(S, Ω), the container tasks are divided in an on-

demand manner. Each container task ϕk of task τi, apart from
its original load bound δk, is affiliated with a δ∗k, representing
the minimal load bound of the larger part if ϕk is divided into

two parts. δ∗k is calculated according to Lemma 3:

δ∗k = max

(
γi − �γi�

2
,
γi − �γi�

γi

)
(17)

86

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 26,2022 at 15:06:06 UTC from IEEE Xplore. Restrictions apply.

For consistency, each light task τj is also affiliated with a δ∗j
which equals to its density δj = Ci/Di.

Sched∗(S, Ω) works in three steps:

1) It first partitions all the input container tasks and light

tasks using the Worst-First packing strategy using their δ∗k as

the metrics. We use ϕ(Px) to denote the set of tasks have

been assigned to processor Px. If the sum of δk of all tasks

in ϕ(Px) has exceeded 1, we stop assigning tasks to Px and

move it to the set Ψ.

2) The total δk of tasks on each processor Px in Ψ is larger

than 1, so some of tasks on Px must be divided into two, and

one of them should be assigned to other processors. On the

other hand, the total δ∗k of some tasks on Px is no larger than

1, which guarantees that we can divide tasks on Px to reduce

its total δk to 1. The function Scrape(Px) divides container

tasks on Px and make the total load of Px to be exactly 1 and

returns the newly generated container tasks. The pseudo-code

of Scrape(Px) is shown in Algorithm 4.

3) Finally, Partition(S, Ω) partitions all the generated

container tasks in step 2) to the processors remained in Ω
using the Worst-Fit packing strategy. After the first step,

the total load of tasks on processors remained in Ω is still

smaller than 1, i.e., they still have remaining available capacity

and potentially can accommodate more tasks. Partition(S, Ω)
returns true if tasks in S can be successfully partitioned to

processors remained in Ω, and returns false otherwise.

Algorithm 3 Sched∗(S, Ω) in SF[x+2].
1: Sort elements in S in non-increasing order of their δ∗i
2: Ψ = ∅
3: for each sequential task ϕk (including both container tasks

and light tasks) do
4: Px = a processor in Ω with the minimal

∑
ϕi∈ϕ(Px)

δ∗i
and satisfying

δ∗k +
∑

ϕi∈ϕ(Px)

δ∗i <= 1

5: if Px = NULL then return failure;
6: ϕ(Px) = ϕ(Px) ∪ {ϕk}
7: if

∑
ϕi∈ϕ(Px)

δi > 1 then move Px from Ω to Ψ
8: end for
9: S = ∅
10: for each core Px ∈ Ψ do
11: S = S ∪ Scrape(Px);

12: end for
13: if Partition(S, Ω) then return success else return failure

We use the same task set for illustrating SF[x+1] to illustrate
SF[x+2]. Now we assume the tasks are scheduled on 5
processors. Since each heavy task is granted one dedicated

processor, the container tasks and light task share 2 processors.
The load bound of the three generated container tasks and the

density of the light tasks are

δ1 = 0.6, δ2 = 0.6, δ3 = 0.5, δ4 = 0.3

Algorithm 4 Scrape(Px).

1: SS = ∅
2: w =

∑
ϕk∈ϕ(Px)

δk − 1
3: for each container task ϕk ∈ ϕ(Px) do
4: if δk − δ∗k > w then
5: divide ϕk into ϕ′k and ϕ′′k such that

δ′′k = w ∧ δ′k = δk − δ′′k

6: put ϕ′′k in SS (ϕ′k still assigned to Px)

7: return SS
8: else
9: divide ϕk into ϕ′k and ϕ′′k such that

δ′k = δ∗k ∧ δ′′k = δk − δ∗k

10: put ϕ′′k in SS (ϕ′k still assigned to Px)

11: w = w − δ′′k
12: end if
13: end for

We can compute δ∗k for each task using (17):

δ∗1 =
3

8
, δ∗2 =

3

8
, δ∗3 =

1

3
, δ∗4 = 0.3 (18)

The algorithm Sched∗(S, Ω) works as follows:
1) ϕ1 is assigned to an empty processor P1.

2) ϕ2 is assigned to the other empty processor P2.

3) To assign ϕ3, both processors are holding a task with

the same load, so we choose any of them, say P1, to

accommodate ϕ3. Since δ
∗
1+δ∗3 = 3/8+1/3 < 1, we can

assign ϕ3 to P1. After that, since δ1+δ3 = 0.6+0.5 > 1,
P1 is moved from Ω to Ψ.

4) There is only one processor P2 in Ω, and since δ∗2+δ∗4 =
3/8+0.3 < 1, we can assign ϕ4 to P2. After that, since

δ2 + δ4 = 0.6 + 0.3 < 1, P2 remains in Ω.
5) After assigning all the four tasks, only P1 is in Ψ. So

we execute Scrape(P1). w = δ1 + δ3 − 1 = 0.1. Since
δ1− δ∗1 = 0.3−3/8 > 0.1, so we divide ϕ1 into ϕ

′
1 and

ϕ
′′
1 where δ

′′
1 = 0.1 and δ

′
1 = 0.6 − 0.1 = 0.5, and put

ϕ
′′
1 in SS.

6) There is only one processor P2 in Ω, since∑
ϕi∈ϕ(P1)

δi + δ
′′
1 = 0.6 + 0.3 + 0.1 = 1

we put ϕ
′′
1 is put in P2.

Therefore, the final result of Sched∗(S, Ω) is

P1 : δ
′
1 =

1

2
, δ3 =

1

2

P2 : δ2 =
3

5
, δ4 =

3

10
, δ

′′
1 =

1

10

The number of extra vertices created by runtime dispatching

of each DAG task in SF[x+2] is bounded as follows.

Theorem 4. Under SF[x+2], the number of extra vertices
created in each DAG task is bounded by 2N , where N is the
number of vertices in the original DAG.

87

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 26,2022 at 15:06:06 UTC from IEEE Xplore. Restrictions apply.

Proof. Let a task execute on several dedicated processors and

two fractional container tasks despite the unit containers with

density of δ
′
and δ

′′
, δ

′ ≥ δ
′′
. By the proof of Theorem 3 we

know the number of splitting occurred on the container task δ′

is at most N . In the following we prove the number of splitting

on the container task δ′′ is also at most N . We use A to denote

the set of vertices (including the parts of the divided vertices)

executed on dedicated processors, and use B to denote the

set of vertices (parts) executed on container task δ′ with a

deadline different from any deadlines of vertices (parts) on

the dedicated processors. If a vertex v is divided into two

parts, v′, executed on the container task δ′, and v′′, executed
on dedicated processors. The migration of v must happens

at a time point aligned with some deadline on the dedicated

processors, so we know v′ must not be in B. Moreover,

according to Algorithm 1, the vertices assigned to dedicated

processors will not migrate to other processors. Therefore, the

total number of elements in A ∪ B is at most N . Therefore,

the number of time points aligned with deadlines of vertices

(parts) executed on the dedicated processors and container task

δ′ is bounded by N . Since a splitting on container task δ′′ only
occurs at time points aligned with deadlines of vertices (parts)

executed on the dedicated processors and container task δ′,
we can conclude the number of splitting on container task

δ′′ is also bounded by N . In summary, the total number of

vertices splitting all the two container tasks is bounded by

2N . Since the vertices assigned to dedicated processors will

not migrate to other processors. Therefore, the total number

of newly generated vertices is bounded by 2N .

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

semi-federated algorithms. We compare the acceptance ratio of

SF[x+1] and SF[x+2] with the state-of-the-art algorithms and

analysis techniques in all the three types of parallel real-time

task scheduling algorithms:

• Decomposition-based scheduling: (i) The EDF-based

scheduling and analysis techniques developed in [10],

denoted by D-SAI. (ii) The EDF-based scheduling and

analysis techniques in [11], denoted by D-XU.

• Global scheduling: (i) The schedulability test based on

capacity augmentation bounds for global EDF scheduling

in [1], denoted by G-LI. (ii) The schedulability test based

on response time analysis for global EDF scheduling in

[3], denoted by G-MEL. G-MEL was developed for a

more general DAG model with conditional branching, but

can be directly applied to the DAG model of this paper,

which is a special case of [3].

• Federated scheduling: the schedulability test based on

the processor allocation strategy in [1], denoted by F-LI.
Other methods not included in our comparison are either

theoretically dominated or significantly outperformed (with

empirical evaluations) by one of the above methods.

The task sets are generated using the Erdös-Rényi method

G(ni, p) [12]. For each task, the number of vertices is ran-

domly chosen in the range [50, 250]. The worst-case execution

time of each vertex is randomly picked in the range [50, 100].
We use a method similar to [10] to generate Ti for each τi:

(Li +
Ci

0.4m× U
)× (1 + 0.25×Gamma(2, 1)) (19)

where m is the number of processors and U the normalized

utilization. In this way, we can: (i) make a valid period, (ii)

generate a reasonable number of tasks when the processor

number and total utilization of the task sets change. In general,

the DAG becomes more sequential (i.e., Li/Ti is larger) as

U and/or m increases. The relative deadline Di is set to be

the same as the period Ti. Note that there are some subtle

differences between (19) and that used in [10]. Later we will

discuss the reason for this slight difference and the impact to

the experiment results.

For each possible edge we generate a random value in the

range [0, 1] and add the edge to the graph only if the generated

value is less than a predefined threshold p. In general, tasks

are more sequential (i.e., the critical path of the DAG is

longer) with larger p. The same as in [10], we also add an

minimum number of additional edges to make a task graph

weakly connected. To generate the task set, we first generate

heavy tasks until the total utilization exceeds U − 1 where U
is the target total utilization, and then generate light tasks.

We compare the acceptance ratio of each method, which

is the ratio between the number of task sets deemed to be

schedulable by a method and the total number of task sets

in the experiments (of a specific group). For each parameter

configuration, we generate 1000 task sets.

Figure 6 compares the acceptance ratios with different

number of processors, where p is randomly chosen in the

range [0.02, 0.9]. Experiment results show that our semi-

federated scheduling approach consistently outperforms all the

state-of-the-art methods. The gap between our approach and

the federated approach becomes smaller when the number

of processors increases. The schedulability of all methods

decrease substantially as m increases. This is because larger

m values lead to longer critical paths, which makes the tasks

more difficult to schedule.

Figure 7 follows the same setting as Figure 6, but task

periods are generated with different ratios between Ti/Li

(corresponding to the x-axis). The normalized utilization of

each task set is randomly chosen from [0.1, 1]. When Ti/Li

is very small, the tasks are difficult to schedule. As Ti/Li

increases, the gap between semi-federated scheduling and

federated scheduling becomes larger, but they merge again

when Ti/Li continues to increase. This is because when

Ti/Li is too large, almost all tasks are light, with which

there is no difference between federated and semi-federated

scheduling. For some global scheduling tests G-LI and D-SAI,

the schedulability directly depends on the value of Li/Ti, and

such exhibits sharp increase at certain Li/Ti values.

Figure 8-(a) shows the acceptance ratio with m = 16
and different p values (x-axis). The normalized utilization of

each task set is randomly chosen from [0.1, 1]. Semi-federated

scheduling significantly outperforms federated scheduling ex-

88

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 26,2022 at 15:06:06 UTC from IEEE Xplore. Restrictions apply.

(a) m = 8 (b) m = 16 (c) m = 32

Fig. 6. Comparison of acceptance ratio with p ∈ [0.02, 0.9].

(a) m = 8 (b) m = 16 (c) m = 32

Fig. 7. Comparison of acceptance ratio with different Ti/Li.

(a) Comparison with different p. (b) Comparison between SF[x+1] and SF[x+2]
with different average γi.

(c) Comparison between SF[x+1] and SF[x+2]
with different average seqeutial task load.

Fig. 8. Comparison of acceptance ratio.

cept when p is large, i.e., when tasks are very sequential.

In the extreme case, when tasks are all sequential, both

federated and semi-federated scheduling degrade to traditional

multiprocessor scheduling of sequential tasks.

The above experiments show that the federated and semi-

federated scheduling approaches generally outperform the

global and the decomposition-based approaches. In the follow-

ing we make in-depth comparison between federated schedul-

ing (F-LI) and our two semi-federated scheduling algorithms.

Figure 8-(b) compares the minimal number of pro-

cessors required by the federated scheduling and semi-

federated scheduling algorithms to make the task set schedu-

lable. In these experiments we set p = 0.1, normal-

ized utilization to be 0.6 and m is randomly chosen

from {8, 16, 24, 32, 40, 48, 56, 64}. The experiment results are

grouped by the average minimal capacity requirement γi of all
heavy tasks in a task set. A value x on the x-axis represents

range (x − 1, x]. The y-axis is the average ratio between the

minimal number of processors required by SF[x+1](SF[x+2])
and the minimal number of processors required by F-LI, to
make the task set schedulable. We can see the resource saving

by SF[x+1](SF[x+2]) is more significant when γi is smaller.

89

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 26,2022 at 15:06:06 UTC from IEEE Xplore. Restrictions apply.

(a) different λ (b) different α (c) different α without dividing U

Fig. 9. Comparison of acceptance ratio in other dimensions.

Figure 8-(c) compares our two semi-federated scheduling

algorithms, in which all task sets have a fixed total normalized

utilization 0.8, and we set m = 16 and p = 0.1. The

experiment results are grouped by the average load of the

sequential tasks (container tasks with fractional load bounds

and light tasks) participating the partitioning on the shared

processors (i.e., tasks in S for Sched(S, Ω) and Sched∗(S,
Ω)). A value x on the x-axis represents range (x − 0.1, x].
As expected, when the task sizes are larger, the performance

of SF[x+1] degrades. SF[x+2] maintains good performance

with large tasks since dividing a large container task into two

significantly improves resource utilization.

In Figure 9, the the normalized utilization is randomly

chosen from [0.1, 1], m = 16 and p is randomly chosen from

[0.02, 0.9]. Figure 9-(a) compares the acceptance ratios with

different individual task sizes in terms of number of vertices.

The number of vertices of each task is chosen in the range

[5λ, 25λ], where λ is a variable corresponding to the x-axis.

The larger is λ, the more vertices on average a task contains.

Recall that in above we mentioned that the period generation

formula (19) is not exactly the same as that used in [10]. First

of all, we add an extra U to the denominator of the term
Ci

0.4m×U . The reason for us to add this extra U is because,

otherwise, only very few tasks are generated in each task set

when U is very small (e.g., when m = 8 and U = 0.25, in
most cases a task set only contains one task), which makes the

experiment results meaningless at low normalized utilization.

Moreover, the constant in the denominator of the term Ci

0.4m×U
(0.4 in our case) is different.

In Figure 9-(b), we replace the constant 0.4 in (19) by a

variable α, i.e., the task periods are generated according to

the following formula:

(Li +
Ci

αm× U
)× (1 + 0.25×Gamma(2, 1))

and evaluate the acceptance ratio with different α. We also

report experiment results in Figure 9-(c) that follow the same

task period generation formula as in [10], i.e., the task periods

are generated by

(Li +
Ci

αm
)× (1 + 0.25×Gamma(2, 1))

with a variable α corresponding to the x-axis. From the

above experiment results we can see that our semi-federated

approach consistently outperforms others with different α
values, regardless whether U is used in the denominator.

VII. RELATED WORK

Early work on real-time scheduling of parallel tasks as-

sume restricted constraints on task structures [13]–[22]. For

example, a Gang EDF scheduling algorithm was proposed in

[15] for moldable parallel tasks. The parallel synchronous task

model was studied in [16]–[22]. Real-time scheduling algo-

rithms for DAG tasks can be classified into three paradigms:

(i) decomposition-based scheduling [10], [11], [23], [24], (ii)

global scheduling (without decomposition) [3], [25], [26] , and

(iii) federated scheduling [1], [27]–[29] .

The decomposition-based scheduling algorithms transform

each DAG into sequential sub-tasks and schedule them by

traditional multiprocessor scheduling algorithms. In [10], a

capacity augmentation bound of 4 was proved for global

EDF. A schedulability test in [23] was provided to achieve

a lower capacity augmentation bound in most cases, while in

other cases above 4. In [24], a capacity augmentation bound

of 3+
√
5

2 was proved for some special task sets. In [11], a

decomposition strategy exploring the structure features of the

DAG was proposed, which has capacity augmentation bound

between 2 and 4, depending on the DAG structure.

For global scheduling (without decomposition), a resource

augmentation bound of 2 was proved in [30] for a single DAG.

In [25], [31], a resource augmentation bound of 2− 1/m and

a capacity augmentation bound of 4−2/m were proved under

global EDF. A pseudo-polynomial time sufficient schedulabil-

ity test was presented in [25], which later was generalized and

dominated by [26] for constrained deadline DAGs. [31] proved

the capacity augmentation bound 3+
√
5

2 for EDF and 3.732 for

RM. In [32] a schedulability test for arbitrary deadline DAG

was derived based on response-time analysis.

For federated scheduling, [1] proposed an algorithm for

DAGs with implicit deadline which has a capacity augmenta-

tion bound of 2. Later, federated scheduling was generalized to

constrained-deadline DAGs [27], arbitary-deadline DAGs [28]

as well as DAGs with conditional branching [29].

90

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 26,2022 at 15:06:06 UTC from IEEE Xplore. Restrictions apply.

The scheduling and analysis of sequential real-time tasks

on uniform multiprocessors was studied in [7], [33], [34].

Recently, [35] investigated global EDF scheduling of npc-

sporadic (no precedence constraints) tasks on uniform mul-

tiprocessor platform. This study was later extended to DAG-

based task model on heterogeneous multiprocessors platform

in [36] where a release-enforcer technique was used to trans-

formed a DAG-based task into several npc-sporadic jobs.

VIII. CONCLUSIONS AND FUTURE WORK

We propose the semi-federated scheduling approach to

solve the resource waste problem of federated scheduling.

Experimental results show significantly performance improve-

ments of our approach comparing with the state-of-the-art

for scheduling parallel real-time tasks on multi-cores. Apart

from the resource waste problem addressed in this paper,

the pessimism of the response time bounds also contribute

significantly to the resource waste in federated scheduling,

which is the main target of our work in the next step. We

will also integrate our approach with the work-stealing strategy

[37] to support hight resource utilization with both hard real-

time and soft real-time tasks at the same time.

ACKNOWLEDGMENT

This work is supported by the Research Grants Council of

Hong Kong (ECS 25204216 and Project 1-ZVJ2 through The

Hong Kong Polytechnic University), the National Nature Sci-

ence Foundation of China (Project 61672140 and 61532007),

State Key Laboratory of Virtual Reality Technology and

System, China and Huawei Technologies Co., Ltd..

REFERENCES

[1] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in
ECRTS, 2014.

[2] S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela, “The global edf
scheduling of systems of conditional sporadic dag tasks,” in ECRTS,
2015.

[3] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional dag tasks in
multiprocessor systems,” in ECRTS, 2015.

[4] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM
journal on Applied Mathematics, 1969.

[5] S. Baruah, “Techniques for multiprocessor global schedulability analy-
sis,” RTSS, 2007.

[6] S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling of
sporadic task systems,” RTSS, 2005.

[7] S. Funk, J. Goossens, and S. Baruah, “On-line scheduling on uniform
multiprocessors,” in RTSS, 2001.

[8] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham,
“Worst-case performance bounds for simple one-dimensional packing
algorithms,” SIAM Journal on Computing, 1974.

[9] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe
tasks,” Real-Time Systems, 1999.

[10] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill, “Parallel
real-time scheduling of dags,” Parallel and Distributed Systems, IEEE
Transactions on, 2014.

[11] X. Jiang, X. Long, N. Guan, and H. Wan, “On the decomposition-based
global edf scheduling of parallel real-time tasks,” in RTSS, 2016.

[12] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and
F. Wagner, “Random graph generation for scheduling simulations,” in
ICST, 2010.

[13] G. Manimaran, C. S. R. Murthy, and K. Ramamritham, “A new ap-
proach for scheduling of parallelizable tasks in real-time multiprocessor
systems,” Real-Time Systems, 1998.

[14] W. Y. Lee and L. Heejo, “Optimal scheduling for real-time parallel
tasks,” IEICE transactions on information and systems, 2006.

[15] S. Kato and Y. Ishikawa, “Gang edf scheduling of parallel task systems,”
in RTSS, 2009.

[16] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in RTSS, 2010.

[17] A. Saifullah, J. Li, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” Real-Time Systems,
2013.

[18] J. Kim, H. Kim, K. Lakshmanan, and R. R. Rajkumar, “Parallel
scheduling for cyber-physical systems: Analysis and case study on a
self-driving car,” in ICCPS, 2013.

[19] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic, “Techniques
optimizing the number of processors to schedule multi-threaded tasks,”
in ECRTS, 2012.

[20] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-time
analysis of synchronous parallel tasks in multiprocessor systems,” in
RTNS, 2014.

[21] B. Andersson and D. de Niz, “Analyzing global-edf for multiprocessor
scheduling of parallel tasks,” in OPODIS, 2012.

[22] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Dobel, and H. Hartig,
“Response-time analysis of parallel fork-join workloads with real-time
constraints,” in ECRTS, 2013.

[23] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet, “Global edf
scheduling of directed acyclic graphs on multiprocessor systems,” in
RTNS, 2013.

[24] M. Qamhieh, L. George, and S. Midonnet, “A stretching algorithm for
parallel real-time dag tasks on multiprocessor systems,” in RTNS, 2014.

[25] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasi-
bility analysis in the sporadic dag task model,” in ECRTS, 2013.

[26] S. Baruah, “Improved multiprocessor global schedulability analysis of
sporadic dag task systems,” in ECRTS, 2014.

[27] ——, “The federated scheduling of constrained-deadline sporadic dag
task systems,” in DATE, 2015.

[28] ——, “Federated scheduling of sporadic dag task systems,” in IPDPS,
2015.

[29] ——, “The federated scheduling of systems of conditional sporadic dag
tasks,” in EMSOFT, 2015.

[30] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in RTSS, 2012.

[31] J. Li, K. Agrawal, C. Lu, and C. Gill, “Outstanding paper award:
Analysis of global edf for parallel tasks,” in ECRTS, 2013.

[32] A. Parri, A. Biondi, and M. Marinoni, “Response time analysis for g-edf
and g-dm scheduling of sporadic dag-tasks with arbitrary deadline,” in
RTNS, 2015.

[33] S. Funk and S. Baruah, “Characteristics of edf schedulability on uniform
multiprocessors,” ECRTS, 2003.

[34] S. Baruah and J. Goossens:, “The edf scheduling of sporadic task
systems on uniform multiprocessors,” RTSS, 2008.

[35] K. Yang and J. H. Anderson, “Optimal gedf-based schedulers that allow
intra-task parallelism on heterogeneous multiprocessors,” in ESTIMedia,
2014.

[36] K. Yang, M. Yang, and J. H. Anderson, “Reducing response-time bounds
for dag-based task systems on heterogeneous multicore platforms,” in
RTNS, 2016.

[37] J. Li, S. Dinh, K. Kieselbach, K. Agrawal, C. Gill, and C. Lu,
“Randomized work stealing for large scale soft real-time systems,” in
RTSS, 2016.

91

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 26,2022 at 15:06:06 UTC from IEEE Xplore. Restrictions apply.

